Sorghum Phytochrome B Inhibits Flowering in Long Days by Activating Expression of SbPRR37 and SbGHD7, Repressors of SbEHD1, SbCN8 and SbCN12
نویسندگان
چکیده
Light signaling by phytochrome B in long days inhibits flowering in sorghum by increasing expression of the long day floral repressors PSEUDORESPONSE REGULATOR PROTEIN (SbPRR37, Ma1) and GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGHD7, Ma6). SbPRR37 and SbGHD7 RNA abundance peaks in the morning and in the evening of long days through coordinate regulation by light and output from the circadian clock. 58 M, a phytochrome B deficient (phyB-1, ma3R) genotype, flowered ∼60 days earlier than 100 M (PHYB, Ma3) in long days and ∼11 days earlier in short days. Populations derived from 58 M (Ma1, ma3R, Ma5, ma6) and R.07007 (Ma1, Ma3, ma5, Ma6) varied in flowering time due to QTL aligned to PHYB/phyB-1 (Ma3), Ma5, and GHD7/ghd7-1 (Ma6). PHYC was proposed as a candidate gene for Ma5 based on alignment and allelic variation. PHYB and Ma5 (PHYC) were epistatic to Ma1 and Ma6 and progeny recessive for either gene flowered early in long days. Light signaling mediated by PhyB was required for high expression of the floral repressors SbPRR37 and SbGHD7 during the evening of long days. In 100 M (PHYB) the floral activators SbEHD1, SbCN8 and SbCN12 were repressed in long days and de-repressed in short days. In 58 M (phyB-1) these genes were highly expressed in long and short days. Furthermore, SbCN15, the ortholog of rice Hd3a (FT), is expressed at low levels in 100 M but at high levels in 58 M (phyB-1) regardless of day length, indicating that PhyB regulation of SbCN15 expression may modify flowering time in a photoperiod-insensitive manner.
منابع مشابه
Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum.
Optimal flowering time is critical to the success of modern agriculture. Sorghum is a short-day tropical species that exhibits substantial photoperiod sensitivity and delayed flowering in long days. Genotypes with reduced photoperiod sensitivity enabled sorghum's utilization as a grain crop in temperate zones worldwide. In the present study, Ma(1), the major repressor of sorghum flowering in lo...
متن کاملSRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana
Timing of flowering is determined by environmental and developmental signals, leading to promotion or repression of key floral integrators. SENSITIVITY TO RED LIGHT REDUCED (SRR1) is a pioneer protein previously shown to be involved in regulation of the circadian clock and phytochrome B signalling in Arabidopsis thaliana. This report has examined the role of SRR1 in flowering time control. Loss...
متن کاملChanges in gene expression levels of the enzymes involved in biosynthesis and degradation of catecholamines following chronic administration of morphine and pain in rats
Introduction: Stress inhibits the development of tolerance to morphine analgesia via activating Hypothalamic- Pituitary-Adrenal (HPA) axis. Modified catecholamine systems have been reported following morphine tolerance development. In the current study we tried to evaluate changes in the gene expression levels for MAO-A, MAO-B, COMT and thyrosine hydroxylase (TyH) enzymes following chronic p...
متن کاملMicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis
The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering a...
متن کاملThe sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B.
The Ma3 gene is one of six genes that regulate the photoperiodic sensitivity of flowering in sorghum (Sorghum bicolor [L.] Moench). The ma3R mutation of this gene causes a phenotype that is similar to plants that are known to lack phytochrome B, and ma3 sorghum lacks a 123-KD phytochrome that predominates in light-grown plants and that is present in non-ma3 plants. A population segregating for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014